Enciklopedija letalstva

Enciklopedija letalstva (545)

08 Jun 07
Napisal

Obračalnik potiska je sistem, ki pomaga letalu zavirati po pristanku. Običajno je obračalnik potiska vgrajen v turboreakcijske in turboventilatorske motorje potniških in transportnih letal ter letal splošne aviacije. Obračalnik potiska ni nepogrešljiv sistem na teh letalih, je pa v veliko pomoč pri varnem in hitrem zaviranju letal po pristanku in zato skoraj nepogrešljiv.

Z uporabo reakcijskih motorjev so se  v letalstvu odprla nova obzorja. Hitrostni, višinski in drugi rekordi so postajali vedno višji in večji. Hkrati s temi rekordi so se večale tudi zunanje dimenzije letal in predvsem njihova masa. Reakcijski motorji so omogočali večje maksimalne vzletne mase letal in tudi višje hitrosti letenja. To je posledično pomenilo tudi višje pristajalne hitrosti letal. Letala različnih kategorij imajo seveda različne pristajalne hitrosti, skupno pa jim je to, da se morajo kar najhitreje in najvarneje ustaviti na pristajalni stezi. Prva letala so bila dokaj počasna in lahka, zato tudi njihovo ustavljanje na pristajalni stezi ni bilo težavno. Zadoščale so zavore, ki so jih imela letala vgrajena v sklopu pristajalnega podvozja. Pozneje so letalom dodali tudi zračne zavore, kar je pristajalno pot še dodatno skrajšalo.

Gibalna količina, ki je produkt mase in hitrosti, je pri današnjih letalih (potniških, vojaških, transportnih …) prevelika, da bi ji lahko nasprotoval le zavorni sistem na pristajalnem podvozju, zato so se pojavile potrebe po dodatnem sistemu ali sklopu sistemov v letalih, ki bi varno in učinkovito nasprotovali tej gibalni količini. Razvili so različne metode, ki jih danes uporabljajo vsa sodobna letala. Glede na kategorijo in namembnost letala konstruktorji izberejo najbolj učinkovit zaviralni sistem.

Sistem, ki je vgrajen v turboreakcijske in turboventilatorske motorje, omogoča predvsem potniškim in tovornim letalom precej krajše pristajalne poti. Del zraka, ki teče skozi motor (vroči ali hladni del), se preusmeri s posebnimi usmerjevalnimi šobami. Smer toka zraka se pri tem spremeni za več kot 90° v primerjavi s pritekajočim zrakom in tako se doseže zaviralni učinek.

Obračalniki potiska so konstruirani tako, da preusmerijo hladni ali vroči zrak iz motorja v smer, nasprotno premikanju letala. Obračalnik potiska ne sme vplivati na delovanje motorja niti, kadar je aktiviran. Deli sistema obračalnika potiska, ki prihajajo v stik z vročim delovnim zrakom, morajo biti izdelani iz materialov, ki prenašajo visoke temperature. Hkrati morajo biti lahki, zanesljivi in učinkoviti. Poleg vsega naštetega morajo zadostiti tudi aerodinamičnim zahtevam. To pomeni, da morajo biti aerodinamično pravilno oblikovani in kadar niso v uporabi (zloženi), ne smejo dodatno povečevati prečnega preseka motorja, ki bi posledično pomenil večji upor letala. V fazi delovanja morajo lopute obračalnika potiska preusmeriti vsaj 40 odstotkov maksimalne potisne sile, ki jo motor lahko razvije. Danes sta najbolj uporabljena obračalnika potiska na turboreakcijskih in turboventilatorskih motorjih školjkasti (clam shell reversers) in kaskadni (cascade reversers) obračalnik.

 

04 Jul 07
Napisal
Veliko število letalskih nesreč v zadnjem času sproža vprašanje varnosti v letalskem prometu. Zakaj se te nesreče dogajajo in ali jih je mogoč preprečiti. Odgovor seveda ni tako preprost kot se zdi, a kljub temu lahko zagotovimo, da se z vsako nesrečo varnost v letalstvu povečuje.  Preiskovalci, ki raziskujejo letalske nesreče si v prvi vrsti pomagajo z informacijami, ki jih pridobijo od morebitnih preživelih. Ker je le teh v letalskih nesrečah praviloma zelo malo ali pa jih sploh ni se morajo preiskovalci zatekati k drugim virom informacij. Na potniških letalih so to tako imenovane črne skrinjice, ki so običajno ključ do vzroka letalskih tragedij nekaj informacij o letu letala pa lahko pridobijo tudi od kontrole letenja. 

crni_skrinjici_sta_obicajno_v_repu_letala.jpg
 
Potniška letala opremljajo z črnimi skrinjicami že dobrih štirideset let. Prve snemalne naprave so snemale pogovore v pilotski kabini in beležile tudi stanje nekaterih vitalnih sistemov na letalu. Teh naprav se je domislil Avstralec David Warren, ki j bil sicer specialist za letalska goriva in član komisije, ki je preiskovala vzroke letalske nesreče prvega potniškega letala na reakcijski pogon. Commet je v krajšem obdobju doživel kar tri nesreče, ki jih niso znali pojasniti, zato so preiskovalci te nesreče dolgo tavali v temi. Naposled so le ugotovili, da je bilo za tragedije krivo napačno konstruirano okno potniške kabine, ki ob veliki oglatosti in zaradi velikih napetosti, ki so se zaradi velikih temperaturnih razlik pojavljale v steklu enostavno počilo in povzročilo katastrofo. Od tedaj so okna na potniških letalih precej manjša in bolj okroglaste oblike. Ugotovitve preiskovalcev so spodbudile civilne letalske oblasti, da so v vseh potniških letalih predpisale obvezno uporabo snemalnih naprav. Avstralija je bila prva država, ki je predpisala obvezno opremljanje vseh potniških letal s temi napravami.

Danes se v potniška letala vgrajujejo dve vrsti snemalnih naprav. Prva je zapisovalnik zvoka v pilotski kabini (cockpit voice recorder, CVR) in druga je zapisovalnik podatkov o letu (flight data recorder, FDR). Zapisovalnik zvoka v pilotski kabini snema vse pogovore med pilotom, sopilotom, kontrolo letenja in vse šume (premike stikal, ročic, alarme, prsketanje, pokanje, trkanje, …), ki se pojavljajo v pilotski kabini. Tonski zapis v pilotski kabini snemajo preko treh mikrofonov. Mikrofon, ki snema šume v pilotski kabini je običajno vgrajen v stropnem panelu, saj tako pokriva največji del centralne krmilne plošče. Ostala dva mikrofona sta vgrajena v komunikacijski set pilota in sopilota. Zbrani podatki se preko posebne računalniške enote posredujejo v črno skrinjico (CVR), kjer se shranjujejo na magnetni trak ali na podatkovni disk.
 
zapisovalnik_zvoka-cvr.jpg
 
Zapisovalniki zvoka - CVR, ki podatke shranjujejo na magnetni trak omogočajo zapis pol ure pogovorov. CVR-ji, ki podatke zapisujejo na podatkovne diske pa shranijo dve uri pogovorov. Po preteku tega časa se stari podatki prepišejo z novimi. V primeru nesreče pa CVR omogoča preiskovalcem letalskih nesreč prisluhniti zadnjim minutam ali uram pogovorov v pilotski kabini in tako pomaga razvozlati vzroke tragedije. V sodobna potniška letala danes vgrajujejo le tiste snemalne naprave, ki omogočajo beleženje podatkov na podatkovne diske.

Zapisovalnik podatkov o letu (FDR) beleži različne parametre na sistemih letala in v njegovi okolici. Mednarodna organizacija za civilno letalstvo ICAO je predpisala, da morajo FDR-ji na potniških letalih beležiti od minimalno 11 pa do 29 parametrov. Število obveznih parametrov je odvisno od velikost letala (kategorije v katero letalo spada). FDR-ji, ki podatke shranjujejo na magnetni trak lahko sočasno beležijo do 100 različnih parametrov medtem, ko sodobnejši zapisovalniki podatkov, katerih spominski medij je disk lahko beležijo preko 700 različnih parametrov. Število zabeleženih parametrov je omejeno navzgor s hitrostjo prenosa podatkov na spominski medij. Zapisovalniki podatkov, ki so bili vgrajeni na letala izdelana po letu 2002 morajo beležiti najmanj 88 različnih parametrov. Ti parametri niso standardno določeni in se razlikujejo med letalskimi družbami, so pa ključnega pomena pri odkrivanju vzrokov letalskih nesreč. Najbolj pogosti parametri, ki jih FDR-ji zapisujejo so: čas, višina leta, hitrost leta, vertikalna hitrost, pospeški, smer leta, položaj ročice za uravnavanje moči motorja, položaj smernega in višinskega krmila, položaj krilc in zakrilc, vrtljaji motorja, tlak in temperatura hidravličnega olja, tlak in temperatura v okolici letala, vpadni kot letala, pretok goriva in mnogi drugi. Vsak zabeleženi parameter je za preiskovalce letalskih nesreč zelo pomemben in morda celo ključnega pomena pri razjasnitvah okoliščin nesreče. Podatki, shranjeni na FDR, se hranijo do 25 ur potem pa se prepišejo z novimi podatki. CVR in FDR sta vgrajeni v rep letala, kjer je največja verjetnost, da z najmanjšimi poškodbami preneseta udarec letala v tla. Trup letala je v tem primeru nekakšna tamponska cona.

zapisovalnik_podatkov_o_letu-fdr.jpg
 
Po letalski nesreči se preiskovalci posvetijo iskanju vzrokov tragedije. Kadar vzroki tragedije niso povsem jasni (trk letal v WTC ni bil posledica tehnične napake ali napake pilota) preiskovalci najprej iščejo črne skrinjice in druge vidne znake vzrokov nesreče, da bi kar se da hitro prišli do dejstev, ki so pripeljala do nesreče. Črne skrinjice so glavni vir informacij o tem kaj se je dogajalo v in z letalom pred trkom, zato so konstruirane tako, da prenesejo obremenitve 3400 g (3 g pomeni, da človek pri tej obremenitvi občuti trikratno lastno težo), vendar le 6,5 ms. Ta čas zadostuje, da podatki shranjeni v črni skrinjici preživijo tak udarec. Poleg tega mora črna skrinjica pol ure prenašati temperaturo 1100°C, saj se letalo po trku običajno vname in zgori. V primeru, da letalo strmoglavi v morje mora črna skrinjica prenesti tlak, ki ga povzroča voda na 6300 m globine.  Da bi preiskovalci nesreče čim laže našli črno skrinjico mora le ta še najmanj 30 dni po nesreči s te globine oddajati 37,5 kHz signal.
 
rna_skrinjica_005.jpg
 
Delovanje oddajnika v tem primeru omogoča baterija, ki je vgrajena v črno skrinjico. Ta baterija pa ne omogoča shranjevanja podatkov na CVR in FDR v primeru, ko je prekinjeno električno napajanje na letalu. Delovanje teh dveh naprav sicer omogočata dva ločena električna vira (enosmerno in izmenično električno omrežje), ki ju imajo potniška letala. V primeru izpada obeh omrežij črna skrinjica preneha beležiti parametre o letu, kljub temu, da letalo lahko še leti. Prav prekinitev zapisovanja parametrov o letu in pogovorov v kokpitu je za preiskovalce nesreč najbolj nezaželena. Ko črni skrinjici najdejo ju odnesejo na urad za transportno varnost (National transport safety board, NTSB), kjer z njiju prenesejo zapisane informacije in jih računalniško obdelajo. V idealnih razmerah, ko so vsi pridobljeni zapisi berljivi pridejo do podatkov na podlagi katerih lahko izdelajo povsem natančno 3D računalniško simulacijo zadnjih minut leta. V primeru, da vsi podatki niso berljivi je simulacija toliko bolj pomanjkljiva. Na podlagi zbranih podatkov simulirajo situacijo pred nesrečo v letalskem simulatorju. S pomočjo tonskega zapisa s CVR se poskušajo kar najbolj vživeti v dogajanje v kokpitu in tako raziskati kaj se je dogajalo v kabini in z letalom.

Podatki pridobljeni iz črnih skrinjic in materialni dokazi s kraja nesreč običajno zadostujejo za razvozlanje vzrokov letalskih nesreč. Z direktivami, ki jih preiskovalci nesreč po svojih ugotovitvah posredujejo letalskim proizvajalcem in letalskim družbam preprečujejo podobne tragedije,k bi jih lahko povzročili podobni ali enaki vzroki.  čŒrna skrinjica kljub svojemu imenu ni črne barve. Nasprotno, je živo oranžne barve, da bi jo lahko v razbitinah čim hitreje našli. Ime je bržkone dobila zaradi svoje funkcije. Za večjo sliko kliknite na sliko.

graficni_izpis_parametrov_letenja_adriinega_letala_a320.gif
 
V prihodnosti bodo črne skrinjice na letalih po vsej verjetnosti zamenjali z dvosmernimi podatkovnimi linki, ki bodo podatke o stanjih v letalu in njegovi okolici prek satelitov posredovali v visoko zmogljive računalnike na zemeljskih postajah. Na ta način se bo povečala količina shranjenih podatkov o letu in dostop do teh podatkov v primeru letalske nesreče. Znižali se bodo tudi stroški, ki jih imajo preiskovalci zaradi iskanja črnih skrinjic na težko dostopnih področjih. Letenje, kljub povečanem številu nesreč v zadnjem času ostaja najbolj varen množični transport. Statistično gledano se na milijon poletov zgodi en s tragičnim koncem. V večini primerov pa gre krivdo iskati na človeški strani. Ali na strani posadke in kontrolorjev letenja ali pa na strani vzdrževalcev.

Zanimivost:
Dvosmerni komunikacijski link, kakršne uporabljajo pri upravljanju brezpilotnih letal bi v kombinaciji s posebnim sistemom lahko omogočil vodenje letala iz zemeljske postaje. Na ta način bi se lahko izognili nesreči kakršna se je pred nedavnim zgodila v Grčiji, ko je letalo po domnevnem nenadnem padcu tlaka v pilotski in potniški kabini še nekaj časa letelo povsem brez nadzora z vključenim avtopilotom dokler ni treščilo v gore. Nezmožnost upravljanja letala s strani posadke bi v tem primeru nadomestil pilot operater na zemlji in letalo varno spravil na tla. Kdaj bo to mogoče je težko napovedati, saj bi nepooblaščen nadzor nad letalom le to lahko spremenil v letečo bombo.
06 Jul 07
Napisal

Za običajne smrtnike, vajene gibanja v dveh dimenzijah, predstavlja zrak za gibanje »neživljenjsko« okolje, ki si ga je podredil z letalnimi napravami, denimo letalom in helikopterjem. Če se vlak giblje v dve smeri, načeloma naprej in vzvratno, to pomeni, da se ga lahko krmari z eno samo roko. Avto je že bolj zapleten, gre naprej in vzvratno kot vlak, vendar tudi levo in desno.

rocice_za_upravljanje_helikopterja.jpg

Smer spreminjamo s krmilom – volanom, vožnjo naprej ali nazaj pa z menjalnikom, kar teoretično in praktično (za avtomobile z avtomatskim menjalnikom) pomeni, da avtomobil krmarimo z eno roko in eno nogo.

Vsakdo pa, ki je kdajkoli videl pilotsko kabino letala, - sploh ni nujno, da je bil to velikanski jumbo jet - se je lahko prepričal v malce bolj zapleteno napravo – za krmarjenje. Torej je letenje le bolj zahtevno od vožnje po tleh! Letalo gre tako naprej kot levo in desno, za razliko od avtomobila in vlaka tudi še navzgor in navzdol, ne pa tudi vzvratno. Vseeno pa v pet smeri! In pilot potrebuje za krmarjenje eno roko in obe nogi.

Helikopter je še nekolikanj bolj zapletena naprava, kot je letalo, vsaj kar zadeva smer gibanja in krmarjenja naprave. Gre tako navzgor kot navzdol, tako levo kot desno - celo bočno - in tako naprej kot, kar je posebnost letalnikov, vzvratno, poleg tega pase še vrti okoli osi v eno ali drugo smer urinega kazalca. Gibanj torej kolikor hočete, najbolj pomembno pa je pravzaprav »negibanje« v zraku: lebdenje!

ciklicni_hod.jpg

Osnovno krmilo helikopterja je ročica cikličnega hoda, podobna ročici pri letalih. Krmari hod vsakega od krakov glavnega rotorja. Vsi ti kraki (ali najmanj par) med vrtenjem tvorijo en sam disk, sprememba cikličnega hoda (izraženo bolj zapleteno in fizikalno ), pa povzroči, da se helikopter nagne, ker ustvari komponento aerodinamične rezultante Ta rezultanta sil dovoljuje, da se helikopter giblje naprej, nazaj ali bočno. Ali bolj preprosto: ko pilot potisne ročico cikličnega hoda naprej, se tudi disk rotorja nagne naprej in usmeri curek pretočnega zraka nazaj, leti pa naprej. In podobno vzvratno in v smeri obeh bokov.

Kadar pilot potisne ročico cikličnega hoda naprej, se tudi disk nagne naprej in usmeri curek pretočnega zraka nazaj. Vodoravna komponenta rotorja je tako zmanjšana, izravnavo doseže pilot s povečanjem vpadnega kota krakov, kar pa stori z ročic kolektivnega hoda.

kolektivni_hod.jpg

Druga je ročica za uravnavanje kolektivnega hoda , ki spreminja korak vseh krakov rotorja in jim spreminja nosilnost. Na tej ročici je tudi ročica za uravnavanje vrtljajev motorja. Ročica hkrati nadzoruje korak vseh krakov rotorja, z dvigom ročice pilot poveča naklonski kot vseh krakov sočasno, s tem pa poveča pretok zraka skozi rotor, kar pri istih obratih rotorja povečuje nosilnost. Z zmanjševanjem obratov rotorja se zmanjšuje tudi vzgon, kar lahko privede do kritične hitrosti; v izogib temu je trebna ob povečevanju kota krakov rotorja povečevati tudi moč motorja, ki tako kompenzira povečani upor. Večina sodobnih helikopterjev s turbinskimi motorji ima vgrajen sistem avtomatskega napajanja z gorivom, ki vzdržuje konstantno hitrost vrtljajev rotorja.

Z nožnimi pedali pilot spreminja  korak repnega rotorja in s tem spreminja smer  helikopterja po navpično osi. Gre pravzaprav za rotor za uravnovešanje reakcije vrtilnega momenta, ki ga ustvari rotacija glavnega rotorja. Ponavadi je repni rotor, kar pove že ime, postavljen na repu helikopterja in ga poganja kar podaljšana gred iz istega motorja(motorjev), ki poganja(jo) tudi glavni rotor.

Ob že omenjenih gibanjih v vseh smereh, največja prednost pri tem sta vertikalen dvig in/ali spust, pa ima helikopter še eno bistveno prednost pred vsemi letalniki: lebdenje v zraku. In med tem lebdenjem lahko pilot obrača helikopter okoli svoje navpičnice in si tako ogleduje vse okoli sebe.

artikulirani_rotor.jpg

Osnovna vzgonska površina helikopterja je glavni rotor, pravzaprav bi krake glavnega rotorja lahko primerjali kar s krili, ki se vrtijo. Predstavljamo si lahko krili (ali več), pritrjeni na osrednjo gred , ki se vrti. Vse skupaj podobno ventilatorju pod stropom. Vrteči kraki rotorja so aerodinamično zasnovani enako kot krila letala. Z izjemo, da so kraki helikopterskega rotorja pač tanjši in ožji, saj se morajo vrteti zelo hitro. Torej je v tem primeru vrteče helikoptersko krilo imenovano preprosto glavni rotor. In ko temu glavnemu rotorju dodamo potem samo še vpadni kot posameznih krakov (kril) in poženemo gred v vrtenje, že začne nastajati potreben vzgon za letenje.

Glavni rotor je tudi sicer najpomembnejši del letalnika – helikopterja, saj zagotavlja za letenje potrebni vzgon, ravno tako pa so potem pomembne še krmilne površine, s katerimi nadzoruje pilot gibanje – letenje, obračanje, menjavo višine ipd. Pri vrtenju krakov rotorja nastajajo seveda ogromne obremenitve, ki jih mora ta najpomembnejši sklop helikopterja vzdržati. Torej mora biti rotor izredno trden.

In kako držati helikopter v smeri, saj glavni rotor s svojim vrtenjem povzroča vrtilni moment, ki ga je potrebno izničiti, da bi se helikopter zaradi tega ne vrtel okoli navpične osi? Običajno in največkrat je to pri helikopterjih rešeno z repnim rotorjem, ki ustvarja potisk, ravno tako kot na primer letalski propeler. Prav ta potisk potem preprečuje vrtenje helikopterja. Z nožnimi pedali pilot spreminja korak repnega rotorja - potisk - in s tem spreminja smer helikopterja po navpični osi. Gre pravzaprav za rotor za uravnovešanje reakcije vrtilnega momenta, ki ga ustvari rotacija glavnega rotorja. Ponavadi je repni rotor, kar pove že ime, postavljen na repu helikopterja in ga poganja kar podaljšana gred iz istega motorja (motorjev), ki poganja tudi glavni rotor.

Smeri vrtenja rotorja in repnega rotorja ter vrtilnega momenta


smeri_vrtenja.jpg

 

Ta repni rotor je lahko tudi oplaščen, torej v nekakšnem kanalu. Učinek je enak, le da je oplaščeni rotor tišji, imenujejo pa ga fenestron. Prav lahko pa repni rotor nadomestijo z šobo za iztekajoče pline. Plini iztekajo v nasprotni smeri vrtilnega momenta in tako preprečujejo, da bi se trup (helikopter) zavrtel. Razvili so ga ameriški proizvajalci, sistem pa poimenovali NOTAR – brez repnega rotorja. Znana ameriška inovativna družba za proizvodnjo specialnih helikopterjev in tehnološko najbolj zahtevnih delov za letala Kaman je razvila tehnologijo dveh sinhronizirano nasproti vrtečih rotorjev, ki imata osi postavljeni pod kotom. Ob tej so konstruktorji zasnovali še več rešitev, ena sta na primer dva rotorja – koaksialna - na isti gredi, ki se vrtita v obratni smeri, kot na primer pri helikopterjih ruskega proizvajalca Kamov, ali pa sta rotorja vsak sebi na skrajnih delih trupa, prav tako pa se vrtita v obratni smeri. Takšno rešitev so uporabili med drugim pri helikopterju CH-47 chinook. Tudi pri namestitvi rotorjev na koncu kril, kot na primer pri konvertiplanu V-22, se rotorja vrtita v nasprotni smeri.

Pogonski sklop
Ta del helikopterja sestavljajo trije sklop:, bistveni je turbogredni motor, potem še reduktor in transmisije.

turbogredna_motorja_helikopterja_mi-8_mtv1.jpg

Turbogredni motorji so pravzaprav tisti, ki so ustvarili helikopter kot varno in zanesljivo zračno-transportno sredstvo, batni motorji namreč niso dali želenih rezultatov iz več vzrokov, bistveni pa je bil dosti večja poraba goriva, s tem pa primerno krajši dolet, pa tudi velikost je bila za ustrezno enako moč bistveno večja pri batnih motorjih, kot je pri turbinskih.

Turbinski motor je pravzaprav podoben kot pri turbopropelerskih motorjih, pripada praktično isti družini. Običajno ga sestavljata enogredni sistem in prosta turbina (prosta zato, ker gre večji del energije na prosto turbino, ki ni mehansko povezana s turbino za pogon kompresorja), glavni deli pa so dovodnik (zajemnik) zraka , kompresor, zgorevalna komora, turbina, prosta turbina, izpušni sistem, ohišje pogona motorja in reduktor motorja. Dva, lahko bi rekli ravno tako pomembna podsistema, pa sta naprava za zagon motorja in podmazovalna naprava.

Zajemnik-dovodnik zraka je profiliran kanal na prednji strani, skozi katerega se uvaja zrak v kompresor, pri tem konstruktorji motorja poskrbijo, da so izgube čim manjše in zračni tok čim manj moten zaradi stabilnosti tokovnega polja pred komresorjem. Pri velikih hitrostih deluje ta dovodnik zraka kot difuzor v katerem se kinetična energija zraka pretvori v potencialno.

vstopnik_za_zrak_cougar_as532al.jpg

Zrak prihaja v motor skozi vstopnik zraka – profiliran kanal na sprednji strani Zrak potem prehaja v kompresor pri čemer konstruktorji pri zasnovi poskrbijo, da so izgube pri tem karseda majhne in je zračni tok čim manj moten, saj to vpliva na stabilnost tokovnega polja pred kompresorjem. Ta dovodnik zraka hkrati funkcionira kot difuzor, v njem pa se kinetična energija pretvarja v potencialno. Tako stabilen in enakomeren (tok) zraka gre potem v kompresor, bodisi aksialen ali pa centrifugalen (eno ali več stopenjski, pri sodobnih turbogrednih motorjih so kompresorji večinoma večstopenjski), tako stisnjen in že segret zrak gre potem v zgorevalno komoro, v kateri se mu vbrizga še gorivo. Ta zmes goriva in skomprimiranega in segretega zraka se potem vžge in prav nastali produkt zgorevanja potem zagotavljajo potrebno energijo za pogon turbinskega dela motorja, pomožnih pogonskih enot, kot so črpalke in generatorji, zatem pri turbopropelerskem motorju propelerja in v našem primeru namesto tega rotorja. Turbina motorja je preko gredi povezana z kompresorjem, ki z vrtenjem zagotavlja nov zrak in opisani delovni proces se tako ponavlja.

turbogredni_motor_helikopterja_cougar_as532_mk1.gif

Kadar turbina reakcijskega motorja ne ustvarja potisnega curka ali ne poganja vijaka, temveč rotor helikopterja, imenujemo tak motor turbogredni. Tudi v tem primeru pa mora biti turbinska gred preko reduktorja povezana z rotorjem, da tako zagotovi manjše vrtljaje. Motorji so konstruirani tako, da se večina energije, ki se sprosti v zgorevalni komori, porabi za vrtenje turbine. Izpušni plini zato ob izstopu iz motorja nimajo velike kinetične energije. Prav to dejstvo zagotavlja tem motorjem precej nizko raven hrupnosti.

V ohišju motorja je potem še vrsta različnih naprav, agregatov in napeljav.

pod_pokrovom_bell_206.jpg

Pomemben sklop je seveda reduktor motorja, ki zreducira število vrtljajev na ustrezno raven ali da zmanjšajo smer vrtenja. Turbogredni motorji dosegajo vrtljaje vse od nekaj tisoč pa celo nad 25.000 obratov v minuti, kar je seveda preveč za rotorje in druge gibljive dele, zato je potrebno te vrtljaje zmanjšati. Tako na primer reduktor v turbogrednem motorju helikopterja SA 332 super puma zmanjša število vrtljajev motorja z 22.800 na 265 min-1 za glavni rotor in na 1279 min-1. Glavni reduktor je jasno tisti, ki zreducira število vrtljajev turbine na želeni število vrtljajev glavnega rotorja; obenem pa prenaša vrtljaje še na reduktor repnega rotorja, poleg tega pa zagotavlja še pogon črpalk za olje in hidravličnega bloka. Stopnja reduciranja obratov znaša v navedenem primeru pri super pumi približno 86 :1 za glavni rotor, za repnega 18 : 1.

Transmisija
Transmisija je namenjena prenosu moči motorja na glavni rotor, pa tudi repni rotor, pa tudi za pogon različnih agregatov in naprav. Tako se transmisije tudi imenujejo po teh sklopih.

glava_rotorja_transportnega_helikopterja_mi-8_mtv1.jpg

Gorivni sistem sestavljajo gorivni rezervoarji, črpalke za gorivo, filtri, vodi, oddušni vodi in čep za natakanje goriva. Ta sistem je v helikopterjih bistveno preprostejši kot pri letalih, saj so gorivni rezervoarji nameščeni večinoma vzdolž vzdolžne osi helikopterja, pa tudi količina je precej manjša kot običajno v letalu. Vojaški helikoppterji imajo običajno od 3 do 5 gorivnih rezervoarjev, so pa tudi izjeme s samo enim, na primer SA 341 gazelle, ki ima dva.

Avtorotacija
Ko govorimo o pogonu in njegovih sklopih, moramo reči še nekaj o tem, kako se obnaša helikopter v primeru odpovedi motorja. V tem primeru se ne bo preprosto zrušil. Pilot s kolektivno ročico takoj pomakne krake rotorja na majhne vpadne kote (na nož) kar jim zagotavlja avtorotacijo - samovrtenje zaradi zraka, skozi katerega potuje. To helikopterju tudi zagotavlja potreben vzgon, ki pa nikakor ni dovolj velik za zagotovitev horizontalnega leta, omogoča pa kolikor toliko varno prizemljitev. Je pa res, da na primer v primeru odpovedi motorja med lebdenjem na višinah med 10 in 250 m rotor ne dobi potrebne hitrosti vrtenja in zato na teh višinah lebdenje ni priporočljivo. Ima pa vsak helikopter, glede na svojo maso in ostale lastnosti, predpisano število vrtljajev rotorja za takšne primere in pilot se ravna po teh predpisanih vrednostih.

Elektronska oprema
Eden najpomembnejših sklopov helikopterja je elektronska oprema, znotraj te pa navigacijski sistemi. Teh sta dve vrsti, najprej sredstva za določanje položaja helikopterja v letu ali lebdenju na osnovi signalov, ki so zunaj helikopterja, in avtonomna sredstva, ki so v helikopterju.

ec_725_kokpit.jpg

Osnovna navigacijska sredstva so radijski kompas, radio-goniometer, usmerjeni radijski svetilniki (VOR,TACAN,ILS), hiperbolična navigacijska sredstev (npr. LORAN), taktična navigacijska sredstva (TACAN) in radarska navigacijska sredstva (slednja se delijo potem na helikopterske dopplerske radarje, radarske radijske višinomere) ter na koncu najsodobnejša, satelitska navigacijska sredstva, kot je na primer GPS.

instrumentna_plosca_v_cougarju_sv.jpg

Vsak helikopter je načeloma opremljen s po dvema radijskima sprejemnikoma-oddajnikoma, radijskim kompasom, giroskopski kompas, radijski višinomer, iterfon in oprema za instrumentalno letenje. Seveda imajo zapletenejšo opremo vojaški in nasploh bojni helikopterji. Predvsem na primer so z navigacijskimi sredstvi dobro opremljeni helikopterji za delovanje nad morjem, manj zapletene navigacijske opreme je v helikopterjih za taktični transport in logistiko.

ah-64d_apache_longbow_kokpit_virboeing.jpg

Posebna oprema
Helikopter je bil nekdaj tipično sredstvo za uporabo zgolj podnevi ali ob zelo svetli noči. Zelo oteženo je bilo že letenje podnevi ob slabem vremenu, sploh pilotom vojaškim helikopterjem, ki potrebujejo zaradi specifičnega načina letenja tik nad tlemi in v zavetju ovir. Vse to je seveda zahtevalo čim boljšo vidljivost, to pa so v skrajnih razmerah omogočile šele naprave, kot je nočnogled, pa tudi sklop in kombinacija drugih naprav in senzorjev, ki podajajo podatke potem na večfunkcionalne zaslone v pilotski kabini, naposled pa tudi že na vizir pilotove čelade.

V času elektrooptičnih naprav druge generacije, so piloti lahko z nočnogledi komajda opazili daljnovode in druge, na primer telefonske vode, pa z zdajšnjimi napravami lahko mirno letijo kjerkoli. Kljub temu je tako, predvsem zelo nizko letenje še vedno zelo zahtevno. Od pilota zahteva poznavanje zemljišča, predvsem pa kondicioniranje, torej redno letenje v nočnih in drugih skrajnih pogojih.

sodobna_pilotska_celada_virec.jpg

Seveda pa današnja tehnologija že ponuja vrsto naprav tudi za nočno letenje in celo nočno bojno delovanje s helikopterji. V poštev pride seveda predvsem v vojaškem, spektru, morda do določene mere še v iskalno-reševalnem.

Od civilnih helikopterjev, in pa tistih za bolj splošno rabo,se zelo razlikujejo bojni helikopterji in pa vgrajena oprema v njih. Gre predvsem za namerilni sklop opreme, ki je v zadnjih desetletjih zelo napredoval. Ti bojni helikopterji imajo v nosu ali na »jamboru« nad gredjo rotorja ali nad pilotsko kabino vgrajene, posebne kupole v katerih je cela vrsta opazovalno-namerilnih naprav, od IR do TV ter drugih senzorjev. Najsodobnejša in najfunkcionalnejša naprava je FLIR - IR naprava za opazovanje prednje polsfere,. Gre za sklop naprav, med njimi je termovizijska kamera, tako v opazovalni kot namerilni funkciji. Naslednji element tega sklopa je radar, zatem radijski ojačevalnik ter računalnik za obdelavo video signala. Vse te od senzorjev pridobljene podatke pilot prebira z večfunkcionalnih zaslonov v kabini, lahko pa mu poseben sistem te podatke generira na zaslon na vizirju čelade ali na zaslon pred vetrobranskim steklom – HUD.

ah-64d_apache_longbow_vzdrzevanje_virboeing.jpg

Za vojaške helikopterje so prav zaradi nizkega ali nočnega letenja ter letenja v najslabših razmerah zelo priporočljive naprave, ki pilota opozarjajo na ovire. Običajno gre za manjšo napravo – helikopterski radar, ki odkriva ovire in jih posreduje na zaslon v kabini ali na pilotov vizir. Senzor odkrije oviro in posreduje podatek, ko je ovira oddaljena še cel km ali nekaj manj. Takšen radar opazi 3 mm debelo žico v razdalji nad 600 m, debelejšo, 14 mm, pa na 900 m. V povezavi z drugimi senzorji in napravami dobiva pilot jasno sliko nevarnosti, v večini primerov pa tudi zvočno opozorilo.

lepo_vidne_zascitne_plosce_iz_kevlarja_ki_varujejo_pilota_helikopterja_b412_ki_letijo_na_kosovu.jpg

Seveda bi lahko našteli še veliko sistemov, ki jih vgrajujejo v današnje helikopterje, vse od sistemov za reševanje posadk v morebitni nesreči do sistemov za javljanje nevarnosti trčenja v zraku, pa sistemov za protielektronsko zaščito. Večina bojnih helikopterjev ima tudi oklepno zaščito, največkrat jo predstavljajo jeklene plošče ali plošče iz kompozitnih predvsem ogljikovih materialov. S to zaščito varujejo člane posadke pred strelivom vsaj kalibrov osebnih orožij, pa vse tja do kalibra 23 mm. Pilot ima običajno zaščiten sedež, tako da sta njegovo telo in glava varna pred kroglami iz lahkega pehotnega orožja. Zaščiteni pa so tudi nekateri vitalni deli helikopterja, od na primer gorivnih rezervoarjev (so iz samozalepne gume) do motorjev in elektronskih sklopov. Zajemniki zraka so prav tako v dosti primerih zaščite s posebno mrežo, ki preprečuje vstop prašnim delcem.

Oborožitev
Posebno poglavje predstavlja oborožitev helikopterjev. Slednja je nekje, preprosto rečeno, med pehotno in letalsko. Zasledili boste tako vgrajene mitraljeze kalibrov od 7,62 mm navzgor, do topov kalibra 30 mm in vodljivih ter nevodljivih raket. 

eurocopter_tiger_virec.jpg

Ti raketni izstrelki so bili najprej protioklepni, zdaj se jim vse bolj pogosto pridružujejo izstrelki zrak-zrak za obrambo pred nasprotnikovimi helikopterji ali letali. Pri protioklepnih izstrelkih jih večina izhaja iz kopenskih sistemov, takšna sta na primer TOW in HOTR, oba povrhu vsega še kompatibilna z kopenskimi sistemi. To precej poenostavi oskrbo, saj se helikopter med kratkim postankom lahko oboroži kar s kopenskimi verzijami teh izstrelkov.

Rakete zrak-zrak izhajajo iz letalskih sistemov, na primer AIM-9 sidewinder ali Matra mistral, prav lahko pa izhajajo tudi iz sistemov zemlja-zrak. Naštejemo lahko primere, kot so stinger, igla in drugi, ki jih strelci običajno izstreljujejo z ramena.

Zaradi letalnih lastnosti predstavljajo na helikopterjih zelo učinkovito orožje nevodljive rakete, uporabljajo jih zelo na široko. Na helikopterje, večje in zmogljivejše, pa v nekaterih primerih, čeprav redko, pripenjajo tudi bombe s celo 500 kg.

Pomembno in zelo učinkovito orožje helikopterjev so protiladijski izstrelki, namenjeni uničevanju površinskih plovil, in pa torpedi za protipodmorniški boj.

Nad morjem uporabljajo še dve vrsti posebnih helikopterjev, prvi so opremljeni s sonarji za iskanje in odkrivanje ter slednje podmornic (ti ponavadi tudi nosijo protipodmorniško orožje), naslednji pa so tako imenovani minolovci z (elektromagnetnimi in drugimi) napravami za razminiranje.

Helikopterska prihodnost
bellboeing_v-22_osprey_kokpit_virnavair.jpg

O tej je tudi veliko govora, nekaj primerov pa smo tudi podrobneje opisali. Med vojaškimi helikopterji jo vsekakor predstavlja RAH-66 (program je bil ukinjen), bojni izvidnik z uporabo tehnologije slabe radarske opaznosti pri konstruiranju in vseh prednosti, ki jih sicer helikopter nudi: torej vertikalnim manevrom, veliko okretnostjo in hitrostjo. Med transportnimi helikopterji je takšen predstavnik sodobne usmeritve evropski NH90, zagotovo helikopter za prihodnja desetletja z rešitvami, ki se bodo zagotovo uveljavile tudi nasploh v konstrukciji transportnih helikopterjev.

Prihodnost je morda, tu ne moremo biti več tako zanesljivi, v konvertiplanih, če bodo le uspeli preseči nekaj tehničnih pomanjkljivosti, ki so botrovale več nesrečam med preizkušanji V-22. Zagotovo bo vse več elektronike v opremi, kar po eni stani olajšuje delo pilotom, po drugi strani pa zapleta vzdrževalcem, kajti integracija vse opreme, vseh sklopov, senzorjev in celotne elektronike v enovit sistem postaja precej zapletena. Sploh pri današnji veliki konkurenčni ponudbi, ko se proizvajalci s tako imenovanim »Costumizingom« trudijo zadovoljiti prav vsaki kupčevi želji in zahtevi, končni rezultat pa so serije praktično povsem različnih helikopterjev, čeprav so vsi istega tipa in celo z enakimi oznakami. Vse to na račun vgradnje opreme in sistemov po željah njegovega veličanstva današnjega dne : kupca.

10 Feb 10
Napisal
Skoraj vsako področje v letalstvu ponuja zanimive kratice in okrajšave. Mnoge med njimi predstavljajo široko tehnično ozadje in povezave med sistemi, ki se med seboj zelo natančno zlivajo v celoto - letalo. Tokrat bomo raziskali pot med pilotom in motorjem skozi FADEC, napredni sistem digitalnega nadzora, ki posadki omogoča, da je upravljanje delovanja motorjev v vsakem trenutku varno in učinkovito.

V svoji najenostavnejši obliki sistemi za upravljanje motorjev letala niso nič drugega kot mehanske vezi med pilotom in motorjem. Pilot s premiki ročic nadzira pretok goriva do motorja in s tem potisk, ki ga v dani situaciji potrebuje. Ne glede na to ali gre za preprost batni motor športnega letala ali zapleten reaktivni motor je cilj nadzora delovanja vedno enak - upravljati motor na najbolj učinkovit in varen način.

Prvi razvojni korak naprej od enostavnega mehanskega oz. ročnega nadzora delovanja motorja so bili testni sistemi za elektronski nadzor motorjev v šestdesetih letih, t.i. analogni elektronski sistemi. Mehansko povezavo med pilotom in motorjem so zamenjali z električnim signalom, ki je nastavitev pogona (potiska) spreminjal v realnem času večkrat v sekundi. Komercialno so tak sistem prvič uporabili na motorjih evropskega nadzvočnega letala Concorde (motorji Rolls Royce Olympus 593).

Digitalni elektronski sistemi nadzora motorjev so bili naslednji logični korak. V sedemdesetih sta prve preizkusne sisteme za vojaške programe začela razvijati NASA in proizvajalec motorjev Pratt and Whitney. To so bili prvi preizkusni sistemi FADEC, ki so že delovali kot digitalni kontrolni sistemi s popolnim nadzorom oz. oblastjo nad motorji - odtod tudi angl. ime: 'Full Authority Digital Engine Control'.

Sestavni deli in delovanje sistemov FADEC
V smislu delovanja se sistemi za digitalni nadzor delovanja motorjev na letalu ne razlikujejo od sorodnih sistemov v novejših avtomobilih. Njihov cilj je povsem enak - zagotoviti največjo učinkovitost delovanja motorja v danih razmerah.

Glavna dela vsakega FADEC-a sta digitalni računalnik in enota za elektronski nadzor motorjev (angl. Electronic Control Unit ali ECU). Vse podatke, potrebne za nadzor, enotama zagotavljajo senzorji v realnem času. Ti zajemajo podatke o gostoti zraka, temperaturah in tlakih v motorju, dotoku goriva, položaju ročic za plin itn., medtem ko FADEC nadzira tudi zagon motorjev. Podatke sprejema enota za elektronski nadzor in jih analizira tudi po 100-krat na sekundo. Velike prednosti in koristi FADEC sistemi omogočajo na dolgi rok, saj lahko proizvajalci tehnične omejitve za varno delovanje motorjev vprogramirajo v sistem. Motorji svojih kritičnih meja tako sploh ne morejo doseči, saj FADEC v izrednih razmerah posreduje namesto pilota, praviloma takoj in dosti bolj natančno.

Kot vidimo FADEC ponuja ogromno prednosti: bolj učinkovito porabo goriva, samodejno varovanje motorjev pred nedovoljenimi stanji delovanja, zagotavlja natančno diagnostiko motorjev na dolgi rok, boljšo povezanost motorjev z ostalimi sistemi na letalu, posadki zmanjšuje zahtevnost in količino dela, saj mnoge spremenljivke nadzira in se v pred-programiranih stanjih letala nanje samodejno odziva (primer:  če letalo izgubi vzgon, FADEC takoj sproži polni potisk motorjev).

Kljub vsem prednostim, ki jih FADEC ponuja, je potrebno poznati še eno njegovih temeljnih značilnosti. Ker je FADEC sistem popolnega nadzora ('Full Authority'), ima kot digitalni računalnik nad delovanjem motorjev popoln nadzor, ki ga posadka ne more prevzeti v nobeni situaciji. Z drugimi besedami - v teoretičnem primeru popolne okvare FADEC-a posadka izgubi tudi motorje (potisk). Ker je sistem povsem avtomatski, piloti v takem primeru nimajo nobenih možnosti ročnega nadzora nad motorji. To tveganje proizvajalci omejijo s tem, da FADEC kot sistem na letalu podvojijo ali celo potrojijo in s tem zagotovijo potrebno 'odvečnost' sistemov (FADEC deluje po dveh ali več enakih, a ločenih digitalnih kanalih).

fedec.jpg
                                (FADEC na motorju Pratt&Whitney PW305, vir: United Technologies, 2003)

FADEC na batnih motorjih

Tako zapleteni in napredni sistemi so pri velikih reaktivnih letalih običajni. Kako pa je z manjšimi letali?

FADEC-i v batnih motorjih ponujajo enake prednosti kot pri večjih reaktivnih motorjih, a v manjša propelerska letala prodirajo šele v zadnjih letih. Razlogi za to so zaenkrat še vedno zelo visoki stroški razvoja in certificiranja sistemov na enoto (na motor). Predvsem ameriška podjetja se trudijo razviti FADEC-e za batne motorje, katerih cena ne bi bistveno presegala cen podobnih sistemov v osebnih avtomobilih, ki pa bi izpolnjevali bistveno večjo zanesljivost po letalskih zahtevah, predvsem ko gre za vžig in vibracije.

FADEC batnemu motorju lahko zagotovi večjo moč in podaljša življenjsko dobo. To je možno z optimiranjem mešanice zraka in goriva, ne da bi pri tem tvegali presuho mešanico (premalo goriva), previsoke temperature in detonacije. čŒe se temperature batov ali izpušnih plinov dvignejo preveč, FADEC dodaja gorivo vsakemu valju posebej in s tem nadzira in zagotavlja popolno ravnovesje med temperaturami in izhodno močjo. Nadzira tudi časovno optimalno iskrenje svečk! Tako lahko motor doseže večjo moč med vzpenjanjem in v križarjenju kot enak motor brez FADEC-a. Medtem ko pilot brez slednjega zgolj po občutku nadzira mešanico za vse valje naenkrat in tako doseže nek skupni približek, FADEC v vsakem trenutku izbira popolno mešanico za vsak valj in s tem zagotavlja večjo skupno moč. To bi bilo brez elektronskega nadzora dotoka goriva povsem nemogoče!

Poleg naštetega FADEC v batnem motorju zamenja sistem magnetov (odpade vzdrževanje), odpade tudi nadzor ogrevanja vplinjača in vžiga (prvi dotok goriva). In vendar bodo prav široke možnosti uporabe poleg cene v prihodnosti najbrž tisti temeljni problem, zaradi katerega bo FADEC-e zelo težko uporabiti kar v vsakem manjšem letalu. V takih primerih namreč ne gre za enostavne nadgradnje temveč zapletene postopke vgradnje v letala, ki so že certificirana in je zato vanje težavno posegati.

fedec_a320.jpg
                                                         FADEC na potniškem letalu (Airbus A320)

Airbus v družini letal A320 ne glede na dobavitelja motorjev (SNECMA-GE CFM56-5 ali IAE V2500) uporablja enak sistem FADEC, ki je ponazorjen na shematskem prikazu zgoraj.

Glavni del FADEC-a tvori enota za elektronski nadzor motorjev (ECU) ter naslednji podsistemi: hidromehanični regulator pretoka goriva, sistem naprav za vžig in zagon, sistem za protipotisk, sistem za vračanje oz. protitok goriva (angl. fuel recirculation) ter sistem senzorjev na motorjih. FADEC med letenjem kot glavno kategorijo regulira potisk in ne pretoka goriva, ter opravlja naslednje naloge:

1. Zaščita pred prevelikimi obremenitvami - Ta delovna funkcija FADEC-a zagotavlja varovanje motorja pred 'prevrtenjem' oz. prekoračitvijo največjih dovoljenih obratov motorja.

2. Upravljanje moči potiska (angl. power management) - Računalnik glede na položaj obeh ročic za potisk določa oz. ugotavlja, katero kategorijo potiska pilot zahteva: največji potisk za vzlet, največji potisk za potovalno križarjenje ali 'potisk v prostem teku'. V skladu s tem položajem računalnik ve, kakšne so mejne vrednosti delovanja pri teh potiskih (t.i. thrust rating) in potisk temu primerno lahko tudi avtomatsko regulira. Ta sistem je v angleškem žargonu znan kot Auto Throttle System (ATS).

3. Zagon motorjev - Zagon se ponavadi izvaja avtomatsko, možen pa je tudi ročni zagon. FADEC zagon upravlja v naslednjih korakih: odprtje ventila stisnjenega zraka (za zagonsko turbino), vključitev vžiga, odprtje ventila za gorivo in nadzor dotoka goriva. Hkrati FADEC nadzoruje rotacijske hitrosti ventilatorja in visokotlačne turbine (N1 in N2).

4. Upravljanje protipotiska z vsemi podfunkcijami in nadzorom obratov med vklopom protipotiska.

5. Upravljanje protitoka goriva - Del goriva, ki teče skozi hidromehanični regulator pretoka v motor, se uporablja za hlajenje olja v reduktorju. Tako ogreto gorivo zopet potuje v črpalko goriva ali nazaj v rezervoarje. V fazah delovanja motorja, ko 'hladilno' gorivo zajame preveč toplote (nad določeno temperaturno mejo), se mu pred vrnitvijo v rezervoarje primeša hladno gorivo. Tak protitok se ne izvaja v fazah vzletanja ali v izjemnih razmerah, ko ima gorivo temperaturo 50°C ali več.

Podajanje signalov za prikaz na instrumentih - FADEC svoje delovanje pilotom prikazuje na zaslonih v kabini. Prikazuje primarne spremenljivke motorjev (obrati N1 in N2, temperatura izpuha in pretok goriva), stanje zagonskega sistema, sistema za protipotisk in celo njegovo lastno stanje (normalno stanje in prikaz lastnih napak).

Avtor: Tomaž Sitar

 

10 Avg 10
Napisal

APU je angleška kratica besedne zveze auxiliary power unit (ali APU) in v neposrednem prevodu pomeni pomožen ali dodatni vir oz. generator, ki sistemom ter različnim funkcijam na letalu nudi električno energijo. V grobem gre za zagotavljanje energije za funkcije, ki nimajo zveze s pogonom letala.


Najzgodnejša letala generatorjev električne energije niso potrebovala, saj praviloma niso imela vgrajenih naprav, ki bi elektriko potrebovale. To se je spremenilo v dvajsetih letih preteklega stoletja, ko so se na krovih letal pojavile radijske in navigacijske naprave, ki so delovale s pomočjo baterij z neposrednim tokom. Kasneje so baterije zamenjali majhni 28-voltni generatorji. Danes tovrstne električne sisteme najdemo le še na manjših športnih letalih.

a380_apu_izpuh_img_2858.jpg

S prodorom reaktivnega pogona v civilno letalstvo so letala postala mnogo bolj zapletena – opremljena z mnogimi električnimi napravami (instrumenti in displeji v pilotski kabini ter ostala avionika, el. aktuatorji, komunikacijske naprave, el. oprema v potniškem predelu vključno s sistemi za informiranje in zabavo potnikov, sistemi za osvetljevanje in ogrevanje itn.). Oskrba z neposrednim tokom ter 28-voltni generatorji teh potreb niso mogli več pokriti, zato večje reaktivce še danes opremljajo s sistemi za zagotavljanje izmeničnega toka pri 115 voltih (400 Hz).

Letala so opremljena s številnimi sistemi za proizvodnjo energije (generatorskimi sistemi). Ti se delijo na primarne ter rezervne (backup) sisteme, slednji energijo ključnim sistemom zagotavljajo v ekstremnih primerih odpovedi oz. okvar. Primarno energijo običajno zagotovijo generatorji izmeničnega toka, ki so neposredno vezani na reaktivne pogonske motorje.

b737-apu.jpg

Potniška in mnoga bojna letala so praviloma vsa opremljena z APU-ji, o katerih je govora v tem članku. APU ni nič drugega kot dodaten vir energije v obliki miniaturnega reaktivnega motorja oz. plinske turbine, ki lahko proizvede dovolj osnega navora, da z njim zaženeš pogonski reaktivni motor letala. APU nudi električno moč, hidravlični pritisk in delovanje prezračevanja letala tudi v času, ko je letalo na tleh. APU-je so skozi razvoj letal montirali na različna mesta – najbolj običajen pa je še vedno položaj APU-ja v repu letala, kjer je lepo vidna tudi izpušna cev na repni konici.

APU je praviloma vedno v uporabi in primarne sisteme za proizvodnjo energije podpira ter jih zamenja, v kolikor pride do odpovedi. Boeing 727 je leta 1963 postal prvi reaktivec z APU-jem, zaradi katerega je lahko pristajal in vzletal z manjših letališč neodvisno od podpore talnih ekip.

ram_air_turbine.jpg

Za redke primere, ko odpove tudi APU, so mnoga letala opremljena z dodatno turbino, ki se odpre iz trupa letala in zavrti pod pritiskom zračnega upora. Tako kot velike vetrnice, znane iz nekaterih držav (npr. Danska, Nemčija), zagotovijo električno energijo v sili za delovanje kritičnih sistemov letala vse do varnega pristanka. Na levi sliki je prikazana veternica, ki je vgrajena na letalo A380. Podobno veternico imajo tudi letala A320.

Poseben primer so APU-ji na ameriškem orbiterju Space Shuttle. Njegovi APU-ji se temeljno razlikujejo od APU-jev na potniških letalih, saj proizvajajo hidravlični pritisk in ne električne energije. Space Shuttle nosi 3 odvečne APU-je, vsi pa delujejo z izgorevanjem posebnega goriva hidrazina. APU-ji Shuttla delujejo le med izstrelitvijo (delovanje kontrolnih površin in nagiba šob motorjev) ter priletom in pristankom (delovanje kontrolnih površin in zavor). Pristanek se v ekstremnem primeru lahko izvede z le enim delujočim APU-jem.

31 Dec 07
Napisal

Z razvojom kompozitnih gradiv so se v strojegradnji odprle nove meje. Masa konstrukcij enake nostilnosti se je zmanjšala, hkrati pa je konstrukcija tudi bolj odporna na mehanske in kemične vplive. Kompoziti so gradiva, ki so sestavljena iz vsaj dveh različnih komponent. Osnova kompozitnih gradiv so vlakna (največkrat ogljikova – Carbon fiber composits (CFC)) okrepljena z umetno smolo. Vlakna tvorijo neke vrste mrežo preko katere so obremenitve razporedijo na večjo površino, medtem ko smola predstavlja vezivo. Rezultat je kompozitno gradivo, ki ga v kalupih poljubno oblikujemo. Element zgrajen iz CFC je vsaj 20 % lažji v primerjavi z elementom iz aluminijevih zlitin (za enake obremenitve). Oblikovanje elementov iz kompozitnih gradiv je v primerjavi z oblikovanjem kovinskih elementov precej dražje in zahtevnejše. To težavo so oblikovalci zaobšli z novimi oblikami komponent, ki jih je z kompozitnimi gradivi ceneje doseči in z zmanjševanjem števila komponent potrebnih za določen izdelek. Krilce letala Lockheed L-1011 tristar izdelano iz kompozitnih gradiv je 26 % lažje od originalnega krilca. Krilce originalno sestavljeno iz 398 elementov so preoblikovali tako, da ga danes sestavlja le 205 elementov. Število zakovic je pri tem padlo iz 5253 na 2574.

konstrukcija_trupa_vireads.jpg

Elemente iz kompozitnih gradiv so v pretežni meri vgrajevali v tiste dele letala, ki niso bili nosilni oziroma podvrženi velikim obremenitvam. Z razvojem tehnologij in dejanskim spremljanjem stanja kompozitov te danes vgrajujejo tudi na obremenjena mesta.

07 Jun 07
Napisal

 

platno_iz_ogljikovih_vlaken_virwikipedia.jpgLetala in helikopterji vsebujejo različne sisteme s katerimi je letenje omogočeno in bolj varno.

Bralce vabimo, da nam pošljete vaše prispevke o sistemih na zračnih plovilih.

Sistemi na letalih
APU - (Auxiliary power unit) - pomožni vir energije
Črna skrinjica
FADEC - Digitalni elektronski sistem nadzora motorjev
Kako leti helikopter
✈ Konstrukcije in konstrukcijska gradiva
Obračalnik potiska
✈ Telekomunikacijski sistemi v letalstvu
✈ Krmilna ročica (side-stick)
✈ Sistem za nočno letenje NVG
✈ Zavihek krila (winglets)
✈ Zaščita pred ledom

Gradiva

Kompozitna gradiva

21 Mar 10
Napisal

Težko je določiti, kateri način prikaza zračnega prostora je najboljši, saj je sestava le-tega zelo kompleksna, ob bolj podrobnem pogledu pa morda celo zapletena. Nekatere vrste zračnega prostora so bolj omejujoče od drugih. Določeni segmenti se pogosto nahajajo znotraj drugih, zato si je zračni prostor morda najlažje predstavljati kar v treh dimenzijah. Če upoštevamo, da določena letališča niso odprta neprekinjeno, pa lahko uporabimo še čas, kot četrto dimenzijo. To pomeni, da v obdobju, ko neko letališče obratuje v njegovem območju oz. terminalni coni velja določen režim oz. omejitve, ko letališče ne obratuje, pa veljajo drugačne omejitve. Takšna primera najdemo tudi pri nas v Sloveniji, in sicer na letališču Portorož (LJPZ) in Maribor (LJMB). Obe letališči namreč ne obratujeta neprekinjeno, tako kot na primer letališče JP Ljubljana.

Največ informacij o klasifikaciji zračnega prostora neke države najdemo v Zborniku zrakoplovnih informacij (AIP), nekaj pa tudi na t. i. Jeppesenovih kartah, ki jih vsako leto izdaja istoimensko podjetje. Nekatere države, ki imajo letalstvo in vzporedno s tem dobro razvito tudi kartografijo, takšne ali še boljše karte izdelujejo same.

Ob pogledu v AIP, si bralec zelo težko predstavlja, kako je slovenski zračni prostor klasificiran oz. kje se kakšen izmed segmentov natančno nahaja. Zato je ob branju skoraj nujen pogled tudi na VFR karto. V Sloveniji lastne VFR karte (še) nimamo izdelane, zato se najpogosteje uporablja karta VFR GPS Jeppesen. Prav gotovo bo potrebno vložiti nekaj truda in sredstva, da bomo tudi v Sloveniji dočakali oz. izdelali svojo lastno karto. Letalski zanesenjaki in VFR piloti prav gotovo pogrešajo tudi VFR priročnik (t.i. manual), ki ga ima marsikatera država. Pri nas je zaenkrat v ta namen na voljo le VFR bilten, ki ga izdaja Kontrola zračnega prometa Slovenije, d. o. o. (v nadaljevanju: KZPS), v njem pa se nahajajo osnovne informacije o sestavi zračnega prostora in nekaj pravil ter informacij o VFR letenju. Da ne bo ostalo vse tako črnogledo, naj omenim, da občasno že potekajo različne aktivnosti, ki težijo k temu, da bomo v Sloveniji dobili prvo lastno VFR karto in VFR priročnik.

Zračni prostor  nad republiko Slovenijo je sestavljen iz 4-ih vrst zračnega prostora. Torej iz C, D, E in G zračnega prostora. G zračni prostor ni posebej naveden. Vse skupaj si lahko predstavljamo kot neko škatlo, kjer je spravljenih več manjših.

Največja oz. zunanja škatla je prostor, ki je v vsaki državi poimenovan po glavnem mestu te države s kratico FIR. V Sloveniji imamo torej območje znotraj državnih meja, ki se imenuje FIR Ljubljana. Slovenski zračni prostor se razteza od tal (GND ali AGL), do višine nivoja leta FL 660 (cca 20 km). Kot navedeno, so znotraj tega prostora štiri vrste zračnega prostora. Po namenu pa je znotraj FIR-a še nekaj vrst zračnega prostora, in sicer:

- CTA (control area - nadzorovano območje),
- TMA (terminal control area - terminalna nadzorovano območje),
- CTR (control zone - letališka nadzorovana cona),
- TSA (temporary segregated airspace - začasno dodeljeno območje),
- D (danger area - nevarno območje),
- P (prohibited area - prepovedano območje),
- R (restricted area - omejeno območje),
- TA (training area - trenažno območje).

Celotni zračni prostor FIR Ljubljana se v grobem deli na dva dela CTA zračnega prostora, in sicer:
- Lower CTA Ljubljana (spodnja plast CTA), ki sega od tal (GND) do FL 245 in
- Upper CTA Ljubljana (zgornja plast CTA), ki sega od FL 245 do FL 660.

Pri tem Lower CTA vsebuje C, D, E in G vrste zračnega prostora, Upper CTA pa le C vrsto. Oba zračna prostora prekrivata območje celotne države.

Bolj se bližamo tlom, bolj je zračni prostor razdeljen. Za lažjo predstavo so opisi različnih vrst zračnega prostora opisani v takšnem zaporedju, kot so navedeni v slovenskem AIP.  

CTA Dolsko: cta_dolsko.jpg

Vrsta zračnega prostora Višina
C FL 195 – FL 245
D FL 175 – FL 195


Zračni prostor CTA Dolsko se nahaja nad območjem zahodno od linije Ruše in sovpada z avstrijsko, italijansko in hrvaško mejo (modra barva). V delu, kjer se nahaja ta črta, je pravzaprav manjša posebnost našega zračnega prostora. Zračni prostor vzhodno od te mejne črte (bela barva) je namreč delegiran avstrijski kontroli zračnega prometa in sicer od višine FL 125 kljub temu, da se nahaja nad slovenskim ozemljem. Mejna črta poteka skozi kraj Ruše in po njem je dobila tudi ime ''Ruse line''.

TMA Dolsko 1: 

Vrsta zračnega prostora Višina
D 7.500 FT MSL(2) – FL 175
E 2.500 FT AGL(1) –  7.500 FT MSL


tma_dolsko-1.jpg

(1) AGL (above ground level – nad tlemi)
(2) MSL (main sea level – nadmorska višina)

Zračni prostor TMA Dolsko 1 na vzhodni strani prav tako meji na liniji Ruše in se nahaja pod plastjo prostora CTA Dolsko. Severna meja tega zračnega prostora je pomaknjena bolj južno, v grobem meji na Alpe.

TMA Dolsko 2: 

Vrsta zračnega prostora Višina
D 9.500 FT MSL – FL 175

tma_dolsko_2.jpg

Zračni prostor TMA Dolsko 2 sega do iste višine kot TMA Dolsko 1 z razliko, da je spodnja meja višja. Ta vrsta zračnega prostora pokriva področje Alp.


CTA Mura 1: 

Vrsta zračnega prostora Višina
C FL 195 – FL 245
D  FL 125 – FL 195
C 7.500 FT MSL –  FL 125
E 2.500 FT AGL  – 7.500 FT MSL

cta_mura_1.jpg

Zračni prostor CTA Mura 1 se nahaja na skrajnem vzhodnem delu Slovenije, na zahodni strani pa jo, tako kot Dolsko, meji linija Ruše. D in C vrsta zračnega prostora nad višino FL 125 v Mura 1 sta delegirana avstrijski kontroli zračnega prometa. Pod višino FL 125 pa je zračni promet pod nadzorom slovenske kontrole zračnega prometa. V primeru, ko letališče v Mariboru ne obratuje, je zračni prostor tak, kot je opisano v tabeli, če pa mariborsko letališče obratuje, je zračni prostor pod FL 125 klasificiran drugače, kar je opisano tudi v nadaljevanju (opis TMA Maribor 1 in 2).

TMA Mura: 

Vrsta zračnega prostora Višina
D FL 125 – FL 175

tma_mura.jpg

Zračni prostor TMA Mura se prav tako nahaja na skrajnem vzhodnem delu Slovenije znotraj zračnega prostora CTA Mura 1. Tudi ta del zračnega prostora je delegiran avstrijski kontroli zračnega prometa.


TMA Ljubljana 1: 

Vrsta zračnega prostora Višina
C 1.000 FT AGL – FL 125

tma_ljubljana_1.jpg

Zračni prostor TMA Ljubljana 1 je terminalni prostor letališča Ljubljana ter se nahaja nad in okoli njegove okolice. V tem zračnem prostoru so izpeljane standardne priletne in odletne procedure (SID in STAR), v njem pa se nahaja tudi letališka cona oz. zračni prostor CTR Ljubljana.

TMA ljubljana 2: 

Vrsta zračnega prostora Višina
C 9.500 FT MSL – FL 125

tma_ljubljana_2.jpg

Zračni prostor TMA Ljubljana 2 je prav tako del terminalnega prostora letališča Ljubljana in se nahaja na skrajnem severu Slovenije, na področju Kamniških Alp in Karavank. Tudi ta del zračnega prostora ščiti priletne in odletne procedure.


TMA Maribor 1: 

Vrsta zračnega prostora Višina
C 2.500 FT MSL – FL 125

tma_maribor_1.jpg

Zračni prostor TMA Maribor 1 je na novo uveden zračni prostor v letu 2008, kar je posledica spremenjenih procedur na mariborskem letališču. Ta prostor se nahaja južno od letališke cone CTR Maribor vendar le v obdobju,  ko mariborsko letališče obratuje. V času ko letališče Maribor ne obratuje, je razvrstitev zračnega prostora CTR Maribor in TMA Maribor enaka razvrstitvi CTA Mura 1, CTA Mura 2 in TMA Dolsko 1.

Pred vstopom v zračni prostor TMA Maribor in CTR Maribor se morajo piloti javiti na frekvenco APP Maribor 119.200 MHz. čŒe odgovora ni, se morajo piloti javiti na frekvenco APP Ljubljana 135.275 MHz, 136.000 MHz ali FIC Ljubljana 118.475 MHz. Pred spremembo je bil terminalni prostor okoli Maribora le eden. Izven delovnega časa letališča mora biti polet ali pristanek najavljen vsaj 24 ur vnaprej.

TMA Maribor 2: 

Vrsta zračnega prostora Višina
C 7.500 FT MSL – FL 125
D 3.500 FT MSL – 7.500 FT MSL
E 1.000 FT AGL – 3500 FT MSL

tma_maribor_2.jpg

Zračni prostor TMA Maribor 2 je večji, kot južni terminalni prostor, le da je na nižjih višinah manj restriktiven (E prostor). Ostale lastnosti in opis so enake, kot pri TMA Maribor 1.


TMA Portorož: 

Vrsta zračnega prostora Višina
C 1.000 FT AGL – FL 135


tma_portoroz.jpg

Zračni prostor TMA Portorož ima enako funkcijo, kot terminalna prostora okoli letališča Ljubljana in Maribor. Prostor ščiti priletne in odletne procedure z in na letališče Portorož.