Borut Podgoršek

Borut Podgoršek

Petek, 08 Junij 2007 09:13

Vstopnik zraka

Vstopišče zraka običajno zajemajo v opis motorja kot njegov sestavi del, čeprav po svoji funkciji to zagotovo ni, ampak je del gondole motorja. Njegov prvenstveni namen je zagotavljanje dotoka svežega zraka v kompresorski del motorja. Zveni preprosto, vendar mora biti vstopnik oblikovano tako, da v vseh režimih leta zagotavlja stabilen in enakomeren dotok zraka ter s tem nemoteno delovanje motorja. Vstopnik mora iz okolice usmeriti v motor čim več svežega zraka ob minimalnih izgubah zaradi trenja. Idealen vstopnik (brez trenja) bi ves totalni tlak spremenilo v statični tlak.

 

vstopnik_za_zrak_cougar_as532al.jpgvstopnik_za_zrak_letala_mig-21_z_notranje_strani.jpg



Pri podzvočnih hitrostih letenja je vstopnik divergentne oblike, njegov presek se povečuje – hitrost dotekajočega zraka se zmanjšuje, statični tlak pa povečuje.

Pri nadzvočnih hitrostih mora vstopnik dotekajoči zrak upočasniti na primerno hitrost. To doseže s konvergentno-divergentno obliko.

Pri letalih, ki letijo v obeh režimih, je vstopnik zraka običajno geometrijsko spremenljivo. Tako zagotovimo minimalne izgube, ki bi se sicer pojavljale zaradi tlačnih skokov.

Petek, 10 Avgust 2018 09:07

Izpušni sistem

Osnovna naloga izpušnega sistema je umiriti in stabilizirati tok produktov zgorevanja, ko zapustijo turbino, ter jim ob izstopu iz izpušnega sistema povečati hitrost. Izpušni sistem obenem preprečuje prenos toplote na ostale dele letala in z vgrajeno zvočno izolacijo zmanjšuje hrup motorja.

izpusni_del_helikopterja_bell_412.jpgizpusni_del_motorja_tumanski_r-25-300.jpg

Izpušni sistem ima v osnovi dve obliki prečnega prereza; konvergentno in konvergentno-divergentno. Ko je razmerje tlakov plinov ob vstopu in izstopu iz izpušnega sistema tako, da je hitrost izstopajočih plinov manjša od lokalne zvočne hitrosti, je izpušni sistem oblikovan tako, da ustvarja konvergentni izstopni kanal. V nasprotnem primeru - kadar je torej razmerje tlakov tako, da omogoča hitrosti izstopnih plinov, višje od zvočne - je izpušna cev konvergentno-divergentne oblike. Plini dosežejo zvočno hitrost v grlu, kjer je kanal najožji, od tam naprej pa jim hitrost narašča. Da bi bil izkoristek v vseh režimih delovanja motorja čim višji, imajo izpušne šobe spremenljiv čelni presek.

x31_3d_izpusne_sobe.jpg

Superkrmarljiva letala imajo spremenljivo obliko izpušne šobe, kar jim omogoča izvajanje neverjetnih letalskih figur in takorekoč premagovanje osnovnih zakonov fizike. Ameriško - Nemški X-31 je bil demonstrator te tehnologije. Danes je ta sistem zelo uspešno uporabljen na ruskem večnamenskem lovcu MiG-29 OVT.

Izpušni sistem je zgrajen iz na temperaturo odpornih materialov (nikelj, titan), saj temperature plinov v njem dosežejo do 850°C, ob uporabi sistema za dodatno zgorevanje pa tja do 1500°C. Izpušna komora je običajno dvostenska; v vmesnem prostoru teče hladnejši zrak, ki ohlaja notranjo steno komore.

Četrtek, 07 Junij 2007 08:58

Sistem za dodatno zgorevanje

Nekatera letala v določenih situacijah (vzlet, manever) potrebujejo dodatno potisno moč. Najpogosteje se pravzaprav uporablja pri motorjih, ki poganjajo bojna letala. To jim omogoča sistem za dodatno zgorevanje. Produktom zgorevanja, ki zapustijo turbino in imajo dovolj visoko temperaturo, vbrizgamo dodatno gorivo. To se zgodi v posebni komori, ki je dodana pred izpušnim sistemom. Gorivo tu zgori, energija, ki se ob tem sprosti, pa se kaže kot povečanje kinetične energije izstopnim plinom. To pomeni večje izstopne hitrosti plinov oziroma večji potisk motorja. Poraba goriva in hrup motorja se ob tem močno povečata. Sistem za dodatno zgorevanje se uporablja le kratek čas.

izpusni_del_motorja_mig-21.jpg

Edino potniško letalo na svetu z vgrajenim sistemom za dodatno zgorevanje je bil concorde, ki ima vgrajene štiri turboreakcijske motorje Rolls Royce SNECMA Olympus 593 mk 602, ki mu omogočajo potovalno hitrost okoli Machovega števila 2. Po tragediji v bližini Pariza leta 2000, ko je kmalu po vzletu strmoglavil concorde družbe Air France, se je zaupanje v to letalo zmanjšalo v tolikšni meri, da letenje z njim ni več rentabilno. Leta 2003 so concorde umaknili iz potniškega prometa.

Četrtek, 09 Avgust 2018 08:50

Zgorevalna komora

Zgorevalna komora je prostor, kjer se gorivo in stisnjeni zrak zmešata in zgorita. Proces poteka kontinuirano, pri tem pa se iz kemične energije, ki je shranjena v gorivu, pridobiva kinetična energija. Nadzorovana eksplozija zmesi goriva in zraka zagotavlja vso potrebno energijo za pogon kompresorja, pomožnih pogonskih enot ter potisk letala. Pri turboreakcijskih in turboventilatorskih motorjih se približno 75 % sproščene energije porabi za pogon kompresorja in pomožnih pogonskih enot, ostalo pa za potisk letala (curek zraka). Pri turbovijačnih in turbogrednih motorjih pa se večina pridobljene energije porabi za pogon kompresorja in pomožnih pogonskih enot. Hitrost izpušnih plinov bistveno ne vpliva na potisk letala.

zgorevalna_komora_v_razlicnih_izvedbah_virlercnasa.jpg

Zgorevalna komora je zgrajena tako, da omogoča čim boljše mešanje zraka in goriva ter s tem čim boljše zgorevanje (čim nižje emisije). Kerozin najbolj učinkovito zgoreva pri razmerju 15:1 v korist zraka. Celotno razmerje zrak/gorivo v motorju pa je med 150-200:1. To pomeni, da je presežek zraka večji od 10. In ta presežek se porabi za različne namene (hlajenje, dodatno zgorevanje …).

obrocasta_zgorevalna_komora.jpg

Zgorevalna komora je razdeljena na primarni in sekundarni del. Še preden se komprimiran zrak vodi v zgorevalno komoro, se razdeli na dva dela. Primarni del zraka (približno 15-20 %) se vodi v neposredno bližino gorivnih šob, kjer se zavrtinči in zmeša z gorivom ter zgori. Sekundarni tok zraka se ponovno razdeli na dva dela. Do 10 % se porabi za dokončanje zgorevalnega procesa, ostali zrak pa za hlajenje ohišja zgorevalne komore ter nenazadnje za hlajenje produktov zgorevanja, ki morajo - preden dosežejo turbinske lopatice - izgubiti nekaj temperature. Kaj lahko bi se namreč zgodilo, da bi bila temperatura po zgorevanju previsoka, s tem pa bi lahko prevroči plini deformirali turbinske lopatice. V najslabšem primeru bi to lahko privedlo do poškodbe turbinskega dela motorja in končno fizične poškodbe motorja. Zgorevalna komora mora zagotavljati kontinuiran, stabilen in temperaturno enakomeren masni pretok plinov na turbinski del motorja.

sodckasta_zgorevalna_komora.jpg

Ločimo več vrst zgorevalnih komor. V zgodnje turbinske motorje so vgrajevali sodčkaste zgorevalne komore, ki so bile razporejene po obodu jedra motorja. Vsaka zase je bila samostojna, skupaj pa so predstavljale celoto. Na zadnjem delu komor je oblikovan poseben prostor, ki naprej zagotavlja enakomeren dotok plinov na turbinske lopatice. Kasneje so razvili komore obročaste oblike, ki so danes najbolj razširjene. Dva obroča drug v drugem sta postavljena okrog jedra motorja. Zgorevanje se dogaja v vmesnem prostoru, tudi tu pa so produkti zgorevanja vodeni na turbinski del. Sčasoma se je pojavila kombinacija obeh komor ter komora z nasprotnim tokom zraka. Slednje delujejo na povsem enakem načelu kot prej opisane, le da je tok zraka v komoro speljan po posebnem sistemu cevi. Zgorevalna komora je v tem primeru postavljena okrog turbine v nasprotni smeri letenja. Zrak iz kompresorja mora, preden pride do turbine, dvakrat spremeniti smer za 180°, enkrat pred komoro in enkrat za njo. Takšni motorji (npr. JT-15, PT6, Garrett TPE311) so precej krajši in lažji, njihov izkoristek pa je zaradi trenja ob spremembi smeri toka zraka manjši.

Zgorevalne komore so zgrajene iz materialov, ki dobro prenašajo visoke temperature in so nekorozivni. Materiali morajo vzdržati velike vibracije, ki jih povzroča motor. Zgorevalne komore gradijo iz nikljevih zlitin, v prihodnje pa jih bodo najverjetneje nadomestili keramični kompozitni materiali.

Pomemben del zgorevalne komore je tudi sistem za vžig.

Četrtek, 07 Junij 2007 08:43

Kompresor

Ločimo centrifugalne in aksialne kompresorje. Oboji so konstruirani tako, da stiskajo zrak. Zraku se med kompresijo zmanjšuje volumen in povečuje temperatura. Pri izstopu iz kompresorja ima zrak torej povečano notranjo energijo.

Tako centrifugalne kot aksialne kompresorje je zaradi velikih mas, ki se vrtijo z visokimi vrtilnimi frekvencami, pred zagonom motorja treba uravnotežiti. Vsaka ekscentričnost kompresorja bi lahko povzročila fizične poškodbe celotnega motorja.

Centrifugalni kompresor

Centrifugalni kompresor je sestavljen iz treh glavnih delov: rotorskega diska (impelerja), na katerem so kompresorske lopatice, statorskega dela (difuzorja), ki je hkrati tudi zunanji del kompresorja, ter razdelilnika, prek katerega stisnjeni zrak preide v zgorevalno komoro.

centrifugalni_kompresor_virlercnasa.jpg

Impeler in difuzor skupaj predstavljata kompresorsko stopnjo. Motor ima lahko vgrajenih več zaporednih centrifugalnih kompresorskih stopenj. Danes se najbolj množično uporabljajo enostopenjski in dvojni enostopenjski kompresorji v različnih kombinacijah. Centrifugalni kompresor deluje tako, da zrak, ki vstopa v kompresor blizu središča vrtenja kompresorja, pospešuje proti njegovi zunanjosti. Zaradi velike vrtilne frekvence in oblike rotorskih lopatic zrak pridobi veliko hitrost. Difuzor, ki ta zrak ustavlja, poskrbi, da se njegova hitrost zmanjša, hkrati pa mu poveča statični tlak. Centrifugalni kompresorji lahko z eno stopnjo dosežejo kompresijsko razmerje do 5:1, z uporabo sodobnih materialov, ki omogočajo večje vrtilne frekvence (večja centrifugalna obremenitev lopatic), pa to razmerje doseže tudi večje vrednosti.

Aksialni kompresor

aksialni_kompresor_virlercnasa.gif

V aksialnem kompresorju teče zrak v aksialni smeri skozi serijo rotorskih in statorskih lopatic. Par rotorskih in statorskih lopatic imenujemo kompresorska stopnja. Več kompresorskih stopenj predstavlja serijo. Reakcijski motorji imajo eno ali več vreten, ki so med seboj ločena. V tem primeru govorimo o eno-, dvo- ali trivretenskih turbinskih motorjih (single, dual oziroma three spool turbojet).


vecstopenjski_aksialni_kompresor_virwebmitedu.jpg

Več vreten omogoča boljši izkoristek kompresorja. Hitrost komprimiranega zraka se namreč v aksialni smeri rahlo zmanjšuje, to pa lahko privede do dušenja kompresorja in nenazadnje do fizičnih poškodb. To bi se lahko zgodilo, kadar motor obratuje pri nižjih obremenitvah, kot so tiste, za katere je bil skonstruiran. Temu se izognemo z dvo- ali trivretenskim turbinskim motorjem. Vrtilna frekvenca posameznih kompresorskih serij je različna in zrak zato lahko nedušeno prehaja naprej. V trivretenskem turbinskem motorju se hitrost visokotlačne turbine (N3) krmili z dotokom goriva. Ostali dve turbini (N1 in N2) se vrtita s trenutnima najboljšima hitrostma. Težave z dušenjem kompresorja se lahko rešujejo tudi s spremenljivim kotom statorskih lopatic ter z izpustnim ventilom, ki odvečnemu zraku omogoča pretok v atmosfero.

hitrost_in_tlak_zraka_skozi_kompresor_virwebmitedu.jpg

Prečni prerez aksialnega kompresorja pokaže, da se pretočni kanal zmanjšuje v smeri toka zraka. Kompresorske lopatice so zato z vsako kompresorsko stopnjo krajše. Zrak skozi kompresorske serije pridobiva notranjo energijo – zmanjšuje se mu volumen ter povečujeta tlak in temperatura. Prirastek tlaka v kompresorski stopnji je od 10-30 odstotkov. Da bi dosegli razmerje 5:1, ki ga zmore centrifugalni kompresor z eno stopnjo, tako potrebujemo od 5 do 8 aksialnih kompresorskih stopenj. Prav zaradi tega so aksialni kompresorji mnogo daljši in kompleksnejši za izgradnjo. Njihov čelni presek je manjši, kar zmanjšuje upor letala. Hkrati so mnogo občutljivejši na poškodbe, njihovo vzdrževanje pa je mnogo dražje. Njihova prednost je omogočanje visokih tlačnih razmerij, ki dosežejo vrednosti 30:1 in več ter relativno majhen čelni presek.


kompresorske_lopatice_vireads.jpg

Kompresorske lopatice se izdelujejo iz materialov, ki prenašajo velike trdnostne, aerodinamične in temperaturne obremenitve, hkrati pa so dovolj lahki. Te lastnosti imajo aluminijeve, magnezijeve, titanove in jeklene zlitine. V nekaterih primerih se uporabljajo tudi kompozitni materiali iz steklenih in ogljikovih vlaken, a le v kompresorskih stopnjah, kjer temperatura zraka še ni previsok.

Četrtek, 07 Junij 2007 08:36

Turbina

V turbini se produktom zgorevanja med ekspanzijo zmanjšajo tlak, temperatura in hitrost. Energija, ki se ob tem sprosti, se uporabi za pogon kompresorja (enega, dveh ali treh), pomožnih pogonskih enot ter za neposreden potisk letala. Turbinski sklop je prek gredi neposredno povezan s kompresorskim delom.

turbinske_lopatice_motorja_tumanski_r-25-300.jpg

Kadar ima motor več stopenj, sta med seboj povezana nizkotlačna turbina in nizkotlačni kompresor ter visokotlačna turbina in visokotlačni kompresor. Stopnja (kompresor-turbina) se vrti z enako vrtilno frekvenco, medtem ko se različni stopnji vrtita pri različnih vrtilnih frekvencah, zaradi česar se izkoristek motorja poveča. Nizkotlačna turbina lahko ob tem poganja še ventilator, prek reduktorja pa tudi vijak. Turbovijačni in turbogredni motorji so skonstruirani tako, da se velika večina sproščene energije iz zgorevalne komore pretvori v delo na gredi. Produkti zgorevanja odtečejo v atmosfero prek izpušne cevi in nimajo omembe vrednega prispevka k potisku plovila.

Ločimo aksialne in centrifugalne turbine, vendar se slednje v letalskih motorjih uporabljajo bolj poredko. Aksialne turbine se razlikujejo po položaju in obliki statorskih in rotorskih lopatic (turbinska stopnja).

Impulzne in reakcijske turbine

Pri impulznih turbinah so statorske lopatice postavljene tako, da tvorijo konvergentni kanal. Zato se produktom zgorevanja v tem območju hitrost poveča, tlak in temperatura pa padeta. Statorske lopatice usmerjajo zrak na rotorske lopatice pod takim kotom, da je izkoristek najboljši – turbina se v tem primeru vrti najhitreje. Rotorske lopatice so postavljene tako, da je hitrost skoznje konstantna, pri čemer tlak in temperatura padata.

odprt_motor_kjer_se_lepo_vidijo_vsi_sklopi_motorja.jpg

Pri reakcijskih turbinah je hitrost zraka skozi statorski del lopatic konstantna. Rotorske lopatice pa so vgrajene tako, da ustvarijo konvergentni kanal. Učinek na stopnji je samo zamenjan, sicer pa je enak kot pri impulznih turbinah. Dejansko so turbinske lopatice konstruirane tako, da imajo na korenu položaj impulzne turbine, na konicah pa položaj reakcijske turbine. Vmes se oblika interpolacijsko spreminja. Podobno kot pri krilu letala, kjer poznamo geometrijsko in aerodinamično zvitje, imajo tudi lopatice za kar najboljši izkoristek energije dotekajočih plinov po dolžini spremenljivo obliko in vpadni kot.

Ob tem so turbinske lopatice podvržene velikim temperaturnim in mehanskim obremenitvam. Temperaturno odpornost lopatic zvišuje kompresorski zrak, ki je hladnejši, v lopatice pa se vpihuje skozi lopatičino notranjost. Ta zrak izhaja iz lopatic skozi majhne luknjice, ki so izvrtane na njihovem prednjem in zadnjem delu. Tako zrak ustvarja zračni film, ki varuje lopatico pred neposrednim stikom z izredno vročimi produkti zgorevanja. Zaradi visokih temperatur se lopatice vseeno deformirajo, materialu pa se spreminja struktura. Po priporočilih standardov naj bi se turbinske lopatice deformirale največ 0,1 % pri obremenitvi 186 kg/cm2 in temperaturi 1380 °F v 300 urah delovanja motorja.

turbinska_lopatica_je_odporna_proti_visokim_temperaturam.jpg

Centrifugalne obremenitve rotorskih lopatic predstavljajo naslednji velik problem. Lopatica, ki ima v statičnem stanju maso 0,09 kg, ima pri 9980 vrtljajih v minuti in 66 cm daleč od osi vrtenja obodno hitrost 350 m/s. Njena teža postane tedaj kar 33.956-krat večja. Zaradi tega se lopatice elastično in plastično deformirajo.

v_trubinskem_delu_motroja_so_lopatice_zracno_hlajene.jpg

Vse te deformacije morajo ostati v sprejemljivih okvirih, zato morajo biti turbinske lopatice izdelane iz izjemno kakovostnih materialov. Nikljeve zlitine (REX78, Nimonic80, CMSX-4, RR3000 … ) z dodatki kroma, kobalda, molibdena ter drugih elementov, iz katerih so lopatice narejene, jim izboljšujejo mehansko odpornost. Dodani aluminij pa lopaticam povečuje protikorozijsko odpornost, ki je nujna zaradi korozijske agresivnosti produktov zgorevanja. Nove tehnologije omogočajo izdelavo lopatic iz okrepljene keramike, ki so mnogo bolj odporne na vse prej omenjene obremenitve. Keramično prevleko imajo tudi kovinske lopatice, zaradi česar se jim močno poveča temperaturna odpornost. To pomeni tudi možnost večjih obremenitev motorja ter posledično večjo koristno moč.

Petek, 06 Julij 2007 14:06

Sinhronizirana strojnica

Oseminštirideset ur za izum

Četrtek, 07 Junij 2007 13:51

Oborožitev

Bralce vabimo, da nam pošljete vaše prispevke o omenjenih sistemih.

Sinhronizirana strojnica

 
Prešli smo na področje, ki brez dvoma zahteva posebno obravnavo, torej posebno široko razlago tako o razvoju kot posameznih vrstah, tipičnih in različicah. Osnovna delitev današnjega letalskega orožja, če izvzamemo namenske bombnike (teh pa je danes malo in so v oborožitvi le nekaj držav), je na ognjeno in na raketno orožje. Naslednje so potem lahko nevodljive ali vodljive, namenjene ciljem v zraku ali pa na kopnem ter na morski površini.

Ko so se pojavile prve vodljive rakete, so nekateri konstruktorji predvsem z lovskih letal odstranili celo do tedaj nezamenljive mitraljeze in topove. Kasneje so na podlagi izkušenj začeli topove spet vgrajevati v letala, saj naj bi bilo po analitičnih podatkih v izraelsko-arabskih vojnah v šestdesetih in sedemdesetih letih kar 15 % letal v zračnih dvobojih uničeno z letalskimi topovi.

Top je zelo univerzalno orožje, saj lahko uničuje tako cilje v zraku kot na tleh, medtem ko se rakete, namenjene uničevanju ciljev v zraku, precej razlikujejo od raket za uničevanje ciljev na tleh (govorimo o vodljivih raketah). poleg tega imajo za današnje razmere še eno prednost -  topov ni moč elektronsko ali drugače motiti, kot je mogoče vodljive rakete.

Na Zahodu danes prevladuje top M61A1 vulcan kalibra 20 mm, s katerim so opremljeni praktično vsi ameriški lovci in lovski bombniki od F-14 do F-18. Francozi in Britanci se zatekajo h kalibru 30 mm, Nemci pa 27 mm. Ruska letala imajo vgrajena topovska orožja večinoma kalibra 23 mm in 30 mm.

Poudarili smo že, da je uvajanje raketnih orožij, predvsem vodljivih, povzročilo temeljito prevetritev v taktiki uporabe bojnih letal. Ta orožja so se dokazala kot zelo učinkovita, tako navajajo podatke o 60-odstotni učinkovitosti izraelskih vodljivih raket zrak-zrak šafir med arabsko-izraelsko vojno v letu 1973. Še boljši rezultat naj bi dosegli Britanci z vodljivimi raketami zrak-zrak kratkega dosega sidewinder med spopadom za Falklande leta 1982, ko naj bi dosegli skorajda 90 % učinkovitost.

Rakete zrak-zrak, pa tudi zrak-zemlja, delimo glede na dolet in glede na način vodenja. Glede na dolet so kratkega, srednjega in dolgega dosega, glede načina vodenja pa pasivno ali aktivno radarsko vodljive (izstreljene so proti cilju, radar pa se vključi samo v končni, odločilni fazi zaradi lastne zaščite), infrardeče (sledijo toplotnemu viru) ali pa kombinirane.

Rakete zrak-zrak kratkega dosega so namenjene uničevanju ciljev do razdalje 20 km, pomembna pa je seveda tudi najmanjša razdalja, ki je nekaj pod 500 m. Med najbolj razširjene sodijo danes rakete sidewider (res pa jo od uvedbe pred trideset leti nenehno izpopolnjujejo). Francozi so svoje enakovredno orožje začeli razvijati  že pred Američani, rakete R.550 magic so v poosebljeni izvedbi magic 2 še vedno v rabi. Znani sta tudi izraelski raketi zrak-zrak kratkega dosega šafrir in piton. Sovjetska zveza  je v sedemdesetih letih razvila raketo zrak-zrak AA-8 Ńaphidî. Najsodobnejše izvedenke raket tega razreda so danes ASRAAM (izpopolnjene rakete zrak-zrak kratkega dosega).

Med raketami srednjega dosega je znana ameriška serija AIM-7 sparrow, nadalje francoska super matra R.530, britanska verzija sparowa sky flash, potem pa sledi cela paleta sovjetskih (ruskih) raket srednjega dosega AA-6, AA-7 in AA-10. Na Zahodu bodo to področje sčasoma pokrile rakete AMRAAM (izpopolnjene rakete zrak-zrak srednjega dosega). Rakete tega razreda omogočajo napade na cilje v zraku v oddaljenosti med 5 in 50 km.

Med rakete zrak-zrak dolgega dosega sodijo orožja z učinkovitim delovanjem v razdaljah od 50 do 150 km in več. Najbolj znamenita je zagotovo ameriška AIM-54A phoenix, s kakršno so oborožili palubne prestreznike F-14 tomcat. Tudi ruska stran razvija nekaj raket z zelo dolgim dosegom in z velikimi hitrostmi na nabojni-turbo reakcijski pogon (t.i. pulzor).

Bojna letala so zelo učinkovita pri uničevanju kopenskih ciljev, kar so dokazala predvsem v zadnjih letih, ko so predvsem NATO in ZDA izvajali izključno letalske napade kot sredstvo pritiska na določene države. Paleta orožij zrak-zemlja (ali zrak-površina) je danes zaradi tega izjemno pestra. Vanjo sodijo nevodljivi raketni izstrelki in vodljivi raketni izstrelki, pa tudi pametne bombe, na primer natančno vodljive laserske bombe. Nasploh je v zadnjem desetletju v ospredju razvoj prav v tej smeri: torej k natančnim zadetkom, ki v sodobnih spopadih tako imenovane nizke intenzivnosti ne povzročajo stranskih posledic v neposredni bližini uničenega cilja. Gre za tako imenovane kirurško natančne operacije, te pa zahtevajo izredno natančne zadetke.

Tudi ta orožja, recimo izstrelke zrak-zemlja (ali zrak-površina) lahko delimo na več načinov, po načinu vodenja ali pa po namenu uporabe. Zanimivo je, da imajo nekatere rakete za napade na kopenske cilje lahko tudi različno vodenje, značilen primer je ameriški AGM-65 maverick s TV, IR in elektrooptičnim vodenjem. Potem se te  rakete dalje delijo po namenu uporabe na  npr. protiladijske, protiradarske, protioklepne ipd. To pa so že precej ozka področja nalog.

Med najučinkovitejša orožja, lansirana z letal, sodijo manevrirne rakete, vendar gre v tem primeru za velika letala, velike nosilce, torej bombnike.

Nekako klasična oborožitev letal so bombe in še dandanes uporabljajo lovski bombniki (in seveda bombniki) tudi konvencionalne prostopadne bombe. Da bi izboljšali njihovo natančnost, so najprej uvedli inercialno vodljive, potem pa TV, IR in lasersko vodljive bombe. Med najbolj razširjene lasersko vodljive bombe sodi danes ameriška bomba paveway z lasersko samovodljivo napravo.

Naslednja skupina so bombe kasetnice, ki vsebujejo večje število bomb, namenjenih uničevanju različnih ciljev, od žive sile do letaliških stez  in oklepnih vozil.

Naposled sodi v arzenale nekaterih držav še taktično jedrsko orožje, ki ga nosijo letala. Običajno so njihovi nosilci večje letala, na primer bombniki, vendar je tudi nekaj lovskih bombnikov oboroženih bodisi z jedrskimi bombami ali taktičnimi jedrskimi izstrelki.

 

V soboto 18.08. v Letalskem klubu Šentvid pri Stični skupaj s partnerji ponovno organizirajo tradicionalni Fly-in piknik.